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The paper deals with Lro-approximations in a probability space (£I, (J, P) by
means of oc-measurable random variables for oc C (J, a (J-Iattice. Attention is paid to
the characterization of the set of all best Lro-approximations in terms of the notion
of "conditional bounds," developed in the paper. On the other hand we study
in the framework above the P61ya algorithm, showing that, if f, denotes a best
L,-approximation and r(n) -> 00, then lim inf f,(n) and lim sup f,(n) are best
Lro-approximations. We also point out an error in an article on this subject by
Darst and discuss the validity of subsequent articles by Darst, AI-Rashed, and
others. © 1989 Academic Press, Inc.

1. INTRODUCTION

This paper deals with two distinct aspects of Leo-approximations. The
first is the study and characterization of the set of best Leo-approximations
to a random variable by elements of Leo(Q, iJ., P), where iJ. is aCT-lattice.
The second is the practical attainment of these best Leo-approximations. In
this direction we provide a complete characterization in the case of simple
random variables and discuss the validity of the P6lya algorithm.

In [9J, Darst studies the convergence, as r -~ 00, of the conditional
r-means given a CT-algebra. The limit of the best Lr-approximations to X by
a-measurable functions, as r ~ 00, is called by Darst the best best
approximation to X by elements of B = Leo(Q, a, P), in the sense that for
each E E a the restriction of this element to E is a best Leo-approximation
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to the restriction of X to E., The technique employed by Darst is based on
the use of partitions of the space by means of suitable sets. However, the
proof of the main result in [9] is not correct. More precisely, Theorem 1 in
Darst's paper is a direct consequence of his Lemma 4 whose derivation
in [9] is not completely satisfactory. Darst's work has been followed in
[1,2,11].

In Section 2 we present some notations and definitions and discuss the
difficulties that arise from the incorrectness of Lemma 4 in [9].

In Section 3 we present an alternative technique for proving results
similar to those in [1,2]. We would like to emphasize that the use of
conditional bounds, introduced in this paper, provides stronger results
than those of [1,2] with rather simple proofs (we work in the general
framework of the Loo-approximation by measurable functions given a
O"-lattice ).

For example, the following statement appears in [1]: "Let {an} be an
increasing sequence of sub-O"-algebras of 0", and let a oo be the O"-algebra
generated by Un an' Call Bn= Loo(Q, an' P), n = 1, ...,00; and let fn'
n = 1, ..., 00 be the best best Loo-approximation to X by elements of Bn"
Then {fn} converges a.e. but not necessarily to f 00'" With our technique
this result becomes trivial and a characterization of the limit is possible. We
also prove the convergence in the case where the sequence of sub-O"
algebras is decreasing. The comparison between the proof in [2] and the
proof we present in Corollary 3.8 clearly shows the advantages of our
technique.

Theorem 3.3 proves that the set of all best Loo-approximations to X by
elements of the closed 'convex cone B == Loo(Q, a, P), .9100 , is not empty.
This theorem also shows that .9100 is an interval of B and characterizes .9100

in terms of the conditional bounds given a, L~, and U~.

Explicit expressions for d = d(X, B) and if> = f* - f* (the difference
between the extremes of the interval .9100 = {g E B; f* ~ g ~ f* }) are
obtained in Theorem 3.4 and Corollary 3.5.

Theorem 3.6 proves that, when a is a O"-algebra, most results in this
paper can be restated in terms of regular conditional distributions.

We remark that when IX is a O"-lattice the study of the conditional
midrange (the best best Loo-approximation when a is a O"-algebra) appears
to be difficult via techniques based on partitions, such as those employed
in [9].

Section 4 is devoted to the second aspect mentioned at the beginning of
this introduction: The P6lya algorithm attempts to obtain a best L oo
approximation as the limit, as r -+ 00, of the best Lr-approximations. In
[7], we have proved that, if a is a O"-algebra, then the best L r

approximation of a function X by a-measurable functions (or conditional
r-means given IX) converge a.s. to the conditional midrange. Moreover the
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latter is a best Loo-approximation by a-measurable functions, thus proving
that in that case the P6lya algorithm is successful. On the other hand Darst
et al. [10, 11 J have shown, by means of examples, that the P6lya algorithm
may fail in the case of monotone approximations: the best L r

approximations by monotone functions are not necessarily convergent as
r~ 00. The question remains whether the limit of a convergent sequence of
best Lr-approximations is a best Loo-approximation. More generally, if
rn~ 00 and fr(n) is the best Lr(nrapproximation, are the functions
lim inf fr(n), lim sup fr(n) best Loo-approximations? On the other hand, in
[7] we have shown that limr~ooIIX-frllr=IIX-fcelloo when ()( is a
(J-algebra. Does this result remain valid when a is only a (J-lattice?

In this paper we answer in the affirmative the previous questions. We
work on probability spaces, in the general framework of conditional
r-means given a (J-Iattice, which originates ftom Brunk [3, 4] and includes
as particular cases those conditional r-means given a (J-algebra and the
isotonic and monotone approximations. Note that our results imply that if
the best L£approximation is unique then it can be computed by theP61ya
algorithm.

2. NOTATION AND PRELIMINARY RESULTS

In this paper (Q, (J, P) denotes a probability space and a a sub-(J-Iattice
of (J (a is closed under countable unions and intersections and Q E ();,

o E a). An extended real function f: Q ~ R* is a-measurable if {f> a} E IX

for all a E R. By LAa) == Lr(Q, a, P), 1~ r ~ 00, we denote the system of all
equivalence classes in Lr(Q, a, P) containing an a-measurable function.
Often we will not distinguish between a function and the equivalence class
it represents.

Let X be a random variable belonging to Lce(a). The Leo-distance from
X to the closed convex cone B=Lce(a) will be denoted by d=d(X, B)=
inf{llX- gil 00; g E B}. Denote by .9100 == .9100 (X, B) the set of an best
Loo-approximations to X by elements of B.

The conditional r-mean given the (J-Iattice a, 1< r < 00, is the (unique)
best Lr-approximation to X by elements of Lr(a) (see [13] for a complete
study).

A well-known result, which will be used later, is the following (see, e.g.,
[6, p. 190]):

(I) If {ft, i E I} is a family of random variables on (Q, a, P),
f* = essuPielfi (resp. f* = esinfie1fJ denotes the random variable defined,
up to P-equivalence, by the relation: If g is (J-measurable, then

fi ~ g (resp. fi ~ g) a.s. i E I ¢> f* ~ g (resp. f* ~ g) a.s.
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It can be proved that there exist countable sets Mel, N c I such that
f* = SUP;EM f; and f* = inf;EN f;·

If {fn} is a sequence of (X-measurable functions, then sup fn and inf fn are
(X-measurable. Therefore, if {I;, i E I} is a family of (X-measurable functions,
essup;El f; and esinCu f; are also (X-measurable functions.

If {C;, i E I} is a family of sets in (J, the sets C* = essup;EI C; and
C* = esinf;El C; are defined by the relations:

(IA denotes the indicator function of the set A).
We define the (X-conditional essential infimum (ei) of X as the

(X-measurable function L", = essup {g; g is (X-measurable and g ~ X a.e. }. In
a similar way the (X-conditional essential supremum (es) of X is defined
by U", = esinf{ g; g is (X-measurable and g ~ X a.e.}. The (X-conditional
midrange of X is defined by M", = !(L", + U",).

As we have announced before, the proof of the main result in [9] is not
correct. Darst has kindly pointed out to us that it is possible to modify the
proof of his Theorem 1 to obtain only L1-convergence from a new
statement of Lemma 4. Darst's new version for Lemma 4 is:

"Suppose J1(F;) >0, bi>O, 1:;>0. Then there exists p;=
p;(F;, b.., 1:;) such that p~ p; implies J1{xEF;; Ifp(x) - m;1 >
y/2 + I:;} < b;, where m i = Hesinf(f, F;) + essup(f, F;) }."

Similar corrections can also be made in [11] to obtain Lcconvergence.
We have proved the a.e. convergence in [7]. On the contrary, the results in
[1,2] are essentially rightly obtained because the modification of Lemma 4
and the Lcconvergence suffice for the proofs there.

The difficulties for proving a.e. convergence in Theorem 1 of [9] can be
circumvented as follows (cf. [7]);

(II) THEOREM. Let PAA, w) == P~(A, w) be a regular conditional dis
tribution for X given the (J-algebra (X (see, for example, [6, p. 213]). Define
the conditional midrange, M"" of X given (X by means of M ",(w) =
!(w-essup + w-esinf) where w-essup (resp. w-esinf) is the essential supremum
(resp. infimum) value of the identity in R for the PA·, w)-probability.

Then there exist versions g r of the conditional r-means of X given (X such
that gr --+ M", a.e. as r --+ 00. Moreover, M", is a best Loo-approximation to X
by elements of B.

Proof Observe that we can suppose w.l.o.g. that the identity in R is
P x (-, w)-a.s. bounded for P-a.e. WEQ. Let as_ denote lal s ·sign(a) and let hr
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be the conditional r-mean of X given (t. Recall that hr is characterized by
(see [13J)

and for any g E LAQ, a,

A standard reasoning (begin with H = I B x A' B a Borel set and A E IX)

shows that if H: R x Q -+ R is (Borel xa)-measurable and H(X, id) E

L, (Q, (J, P) then t/J(w) = JH(t, w) PAdt, w) is a version of the conditional
mean of H(X(.),·) given a. Putting H(t, w)= (t-hr(w))~,we see that the
map t/J r: Q -+ R, t/J Aw) = J(t - hAw))~PAdt,w) is the conditional mean
(or 2-mean) of (X-hr)~ given a; hence by the characterization above of
the conditional r-mean: t/J r = 0 P-a.e.

Let g r(w) be the value of the r-mean of the identity on R with respect to
the probability PA·, w). Then

J(t- gAw))~PAdt,w)=O for every WE Q,

so h r = grP-a.e.
By the convergence of the r-mean to the midrange as r -+ c:JJ (see [8J) we

have then: limr~ 00 gr(w) = !(w-esinf+ w-essup) = M~(w).

A proof of the fact that M~ is a best Loo-approximation is given in [7J,
but a simpler one will be given in Theorem 3.3 taking into account
Theorem 3.6.

3. BEST Loo-ApPROXIMATIONS AND CONDITIONAL BOUNDS

Some obvious properties of the a-conditionals es and ei are stated in the
following proposition:

PROPOSITION 3.1. (a) L~ ~ X ~ V~ a.e. and if g is an rx-measurable
function verifying g~X a.e. (resp. g;:,X a.e.) then g~L~ a.e. (resp. g;:' Va)'
Moreover, for each k E R, L~ + k (resp. V" + k) is the a-conditional ei(resp.
es) of X +k.

(b) L~, V"' M" belong to Loo(Q, a, P).

(c) Let a, f3 be two sub-(J-lattices of (J and suppose a c /3; then L" ~ L Ii

and V~;:, Vii a.e.

If, moreover, a is a (J-algebra:

(d) L" (resp. V,,) is the unique (up to equivalences) a-measurable
function with P(L" ~ X/a) = 1 a.e. (resp. P(V,,;:' X/a) =1 a.e.) that verifies
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the following property: If f is a-measurable and P(f::::; Xla) = 1 a.e. (resp.
P(f';J:.Xla) = 1 a.e.) then Loc';J:.f a.e. (resp. Uoc::::;f a.e.).

When a is a cr-algebra, doo(X, B) is not empty. This is proved in [7] by
use of the existence of the limit of the conditional r-mean as r -400. This
limit may not exist if a is a cr-Iattice but not a cr-algebra (see [11]).
Therefore we prove the existence of elements of best Loo-approximation to
X in B in a different way.

We first need a lemma. Let m > 0 and call '?fm= {g; g E Band
IIX- gil oo::::;m}.

LEMMA 3.2. Assume '?fm not empty. Then '?fm coincides with the set {g; g
is a-measurable and Uoc - m::::; g::::; L oc + m a.e.}.

Proof Note first that '?fm= {g; g E B, X - m::::; g::::; X +m a.e.}. Now, on
taking f*m=esinf{g; gE'?fm}, f~=essup{g; gE'?fm}; it suffices to prove
f*m= Uoc-m and f~=Loc+m a.e.

We only prove f*m = Uoc - m a.e., as the proof of f~ = L" + m is similar.
From Proposition 3.1(a), the a-conditional es of the random variable

X-m is U;=U,,-m. Moreover Proposition3.l(a) implies that U;::::;g
a.e. for each g E '?fm, whence U;::::; esinf{ g; g E '?fm} = f*m a.e.

Now observe that U; is a-measurable and, as f*m::::; g a.e. for each
g E '?fm (not empty), we have f*m ::::; X + m a.e. Hence X - m::::;
U;( ::::;f*m) ::::; X + m a.e., whence f*m ::::; U; is a-measurable.

The following theorem characterizes the set doo(X, B).

THEOREM 3.3. d oo = doo(X, B) is not empty (in fact the conditional
midrange belongs to d oo ). Moreover d oo coincides with the set {g; g
a-measurable and Uoc - d::::; g::::; L" + d a.e.}.

Proof It is obvious that d oo ='?fd= nneN '?fd+(lin) and that '?fd+(l/n) is
not empty for every n E N. Lemma 3.2 yields

'?fd+(lin) = {g; g a-measurable and U" - d - lin::::; g::::; L oc + d + lin a.e.},

whence M oc = !(L" + Uoc ) = !{(Loc + d+ lin) + (U,,- d-l/n)} E '?fd+(lIn) for
every n E N. Thus M" E d oo and d oo is not empty.

The application of Lemma 3.2 to '?fd finishes the proof.

The distance, d, of the variable X to the set B may also be characterized
by means of La and Ua:

THEOREM 3.4. d = d(X, B) = ! II Ua- La II 00 •
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Proof Set ,z=!IIU~-L~lloo' Theorem 3.3 implies that U~-d~L~+d
a.e., hence 0 ~ U~ - L~ ~ 2d a.e. and 2,z = II U~ - L~ II 00 ~ 2d.

We shall prove that ,z ~ d. Observe that:

In Theorem 3.3 we have also obtained that !( U~ + L~) E sloo , which
implies d= IIX-!(U~+L~)lloo'

Moreover:

(a) If X~!(U~+L~), then IX-!(U~+L~)I =X-!(U~+L~)~

U~ - !(U~ + L~) ~ II U~ - !(U~ +LJII 00 =,z.

(b) If X<!(U~+L~), then IX-!(U~~+L~)I=!(U~+LJ-X~

!(U~ + L~) - L~ ~ II!(U~ + L~) -L~ II 00 =,z.

Thus d= IIX-!( U~ + L~)II 00 ~,z.

Let f* (resp. f*) be the smallest (resp. the largest) best L oo 
approximation to X by elements of B (then f* = U~ - d and f* = L~ + d).
Reference [1] provides, in the case where ex is a a-algebra, a charac
terization of the difference if> = f* - f* in terms of the sets developed in
[9]. We present an explicit characterization of if> in the following obvious
corollary:

COROLLARY 3.5. Let if> = f* - f* be the difference between the extremal
best Loo-approximations to X by elements of B. Then:

THEOREM 3.6. Let ex be a sub-a-algebra of a, let P )A, w) == P~(A, w) be
a regular conditional distribution for X given ex and let F(t, w) be the
associated conditional distribution function. Define L * by L *(OJ) =
inf{ t/F(t, w) > O} (resp. U* by U*(w) = sup{ t/F(t, OJ) < I}). Then L *
(resp. U*) is a version of the ex-conditional ei (resp. es) of X

Proof We only prove the statement for L *; the other case is similar.
Let {tn } be the set, Q, of rational numbers. Define r n by

if F(tn,w)=O

if FUn, OJ) > o.

Obviously rn IS ex-measurable and L * = sup rn , and therefore L * is
ex-measurable.
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For every n:

P{X~ Tn/a}~' = P{X~ tn, F(tn, .) = O/a} +P{X~ - 00, F(tn, .) > O/a}

~. = I{F(tn •.)~O)(1 - F(tn , .)) + I{F(tn•. ) = 1.

Thus P{X~L*/a}= 1 a.e. Now, taking into account Proposition 3.l(d), it
suffices to show that for f a-measurable with P{X~ f/a} = 1 a.e. one has
L*~f a.e.

Assume, on the contrary, P(A»O where A={L*<f}. Since
A=USEQ{L*<s<f} then there exists a rational number, s, such that
P{L* < s <f} > O. But L*(w) < s implies F(s, w) > 0, hence:

a.e.

P{X<f/a} ~ ~ P{X<s <f/a}~'=I(s<f)P{X<s/a}~'

=I(s<f)F(s,.) ~I{L'<s<f)F(s, .).

Thus we have P{P(X<f/a»O}~P{L*<s<J}>O.
Therefore P{P(X~f/a)< 1} #0 contradicting that P{X~f/a}= 1 a.e.

It is obvious from this theorem that, in the case where a is a a-algebra,
the conditional midrange, M", of X given a, as defined in (II), is a version
of the a-conditional midrange. Therefore (II) shows that the a-conditional
midrange coincides with the best best Loo-approximation by elements of
Loo(Q, a, P) (a being a a-algebra).'

Now we present some convergence results.

THEOREM 3.7. Let {an} be an .increasing (resp. decreasing) sequence of
sub-a-lattices of a and let a oo be the a-lattice generated by Un an (resp.
a oo = nn an)' Let L n and Un be the an-conditionals ei and es for the random
variable X. Then, L ni sup L n:::; L oo a.e. and Un! inf Un ~ U 00 a.e. (resp.
L n! L oo a.e. and Un i U00 a.e.), where L oo and U 00 are the aoo-conditionals ei
and esfor X.

Proof The increasing case follows from Proposition 3.1 (c). The exam-'
pIe in [2] proves that Un need not converge to U00' Examples in which L n
does not converge to L oo can be obtained by similar methods.

Now suppose an! a oo . We prove L n! L oo a.e., because the proof of
Un i U 00 is analogous.

From Proposition 3.1(c) we obtain Ln!infLn a.e. and infLn~Loo a.e.
Obviously inf L n is ak-measurable for every k, and so inf L n is a oo
measurable. Also P{X~infLn}~P{X~Lk}=1 for every k, so that
inf L n :::; L oo a.e. Therefore inf L n= L oo a.e.
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COROLLARY 3.8. With the notation and hypotheses of the previous
theorem, let M n, n = 1, 2, ..., 00, be the an-conditional midrange of X. Then
M n converges a.e. Moreover, in the decreasing case (an! a",,) we have
Mn~Moo a.e.

In the particular case where it is assumed that an' n = 1, 2, ..., 00, are
a-algebras, this corollary proves the a.e. convergence of the best best
Loo-approximants to X by elements of Loo(Q, an' P).

THEOREM 3.9. Let {Xn} be a sequence of random variables in
Loo(Q, a, P) such that X n~ X in the Loo-norm, and let a be a sub-a-lattice of
a. Now denote by L n, Un, M n (resp. L, U, M) the a-coditionals ei, es and the
midrange for X n (resp. X). Then L n -+ L, Un -+ U, and M n -+ M in the L oo
norm. (If a is a a-algebra the best Loo-approximation by elements of
Lw(Q, a, P) is continuous in Loo(Q, a, P).)

Proof We present the proof for the sequence {Ln } only.
Take b > O. The convergence X n -+ X in the Loo-norm implies that there

exists no such that IXn- XI ~ b a.e. for every n >no. Therefore, if n >no we
can write

and

Hence L n- b~ L a.e. and L - b~ L n a.e., and so ILn- LI ~ (j a.e.

4. THE POLYA ALGORITHM IN ISOTONIC REGRESSION

The main result on this topic is contained in Theorem 4.4.
Proposition 4.1 characterizes in a simple way the set doo(X, B) for a simple
random variable. Finally we prove in Theorem 4.5 that the Lr-distance
from X to Lr(a) converges to d = d(X, B), the Loo-distance between X and
B. Recall that X is a P-a.s. bounded random variable and assume that,
from now on, L (resp. U) denotes the a-conditional ei (resp. es) of X and fr
is the a-conditional r-mean of X given a.

PROPOSITION 4.1. Let X = L:7= 1 AJAi be a simple random variable where
the Ai' are disjoint sets whose union is Q (A 1 + ... + An = Q), and suppose
Al < A2 < ... < An' Define the sets *Ck = esinf{ C E a; A k + A k + 1 + ... +
An C C}, *Ck = essup{C E a; C c A k + A k + 1 + ... + An}. Then L =
L:7=1 A;!.Ci- .Ci+l and U = L:7= 1 A;!*Ci-*Ci+l (where *Cn + 1 = *Cn+ 1= 0)·
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Proof Let us denote L * = L7= I A).Ci- .Ci+1 and U* = L7~ I A).Ci- .Ci+I·

First we prove U = U*. Obviously U* is a-measurable, and, being
Ln>t(*Ci- *Ci+d=.Q, it suffices to show that g;:::di a.e. on *Ci- *Ci + 1

for each a-measurable function g verifying g ~ X a.e. Let g be such a
function. Since Ai < Ai+1< ... < An we have Ai + A i+1+ ... + An C
{g~AJ, and g being a-measurable: {g~AJEa. herefore *CiC{g~Ai}

a.e. and a fortiori g~Ai a.e. on *Ci- *C i + l .

We now prove L = L *. First observe that if L is the a-conditional ei of X,
then - L is the aC-conditional es of - X. Then the relations

{essup[CEa; CcA k + ... +An]}"=esinf{DEaC
; Al + ... +Ak _ 1 cD},

U = U* imply the result.

The last proposition and Theorem 3.4 imply the following corollary.

COROLLARY 4.2. Assume the hypotheses of the preceding proposition and
define M ij= (*Ci- *Ci+d n (*Cj - *Cj +d, i~ j. Then d= i SUP{A.i- Aj ,

P(Mij»O}.

The following lemma notably simplifies the proof of Theorem 4.4, based
on the technique used by Landers and Rogge in [12].

LEMMA 4.3. For each a-measurable function g and every r, 1~ r < 00, we
have:

IIX-min{I" g}llr~ IIX-gll r ·

Proof Since IX - min{I" g}lr + IX - max{I" g}lr
IX- glr, by integration we obtain:

JIX -min{In g}lr dP+ JIX -max{In g}lr dP

IX-frl r +

= JIX - frl rdP+ JIX _glr dP. (*)

As g is a-measurable, and hence min{In g} and max{fn g} are
a-measurable, we have by definition of fr:

JIX - frl rdP

~min {f IX-min{I" g}lr dP, fix -max{I" g}lr dP},

hence (*) yields JIX - min{In g} Ir dP ~ JIX - gl r dP.
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THEOREM 4.4. For every sequence {r(n)}n, r(n)-+oo, liminffr(n) and
lim sup fr(n) are variables in doo(X, B).

Proof Suppose w.l.o.g. that r(n) ~ r(n + 1) for every n, and consider a
fixed r ~ 1. Then there exists no( = no(r)) such that r~ r(n) for all n ~ no;
hence, if k ~ no, the repeated use of the previous lemma gives:

IIX- min{fr(I)' k~ I~ n}llr

~ IIX - min {fr(l)' k~ I ~ n} II r(k)

~ IIX- min {fr(I)' k + 1~ I ~ n }IIr(k)

~ IIX- min {fr(I), k + 1~ I ~ n }IIr(k+ I)

~ ... ~ IIX - fr(n) II r(n) ~ IIX- f 00 II r(n)

for any foo in doo(X, B) (not empty from Theorem 3.3).
Hence n -+ 00 yields IIX - inf{fr(I)' k~ I} II r ~ IIX- f 00 1100, whence k -+ 00

yields II X - lim inf fr(n) II r ~ II X - f 00 II 00' Now r -+ 00 yields that
Theorem 4.4 (the assertion lim sup fr(n) E doo(X, B) can be proved in the
same way from the obvious modification of Lemma 4.3).

It may be suspected that Theorem 4.4 may be improved in some sense.
For example, in the case in which a is a IJ-algebra, the a-conditional
midrange plays an important role as the best of the best L oo 
approximations. Is it true that, in isotonic approximation, the a-con
ditional midrange, M a , verifies lim inf fr(n) ~ M a ~ lim sup fr(n) a.e. for
every sequence r(n) -+ oo? The answer is negative. It is even possible that
fr(n) converges for every sequence r(n) -+ 00 and P{Ma -1= limfr(n)} > 0:

Consider the probability space ([0, 1], [3, t), where t is the Lebesgue
measure on [3 (the Borel sets in [0, 1]).

Let X be the random variable X = 1[0,1O-2J - 1(10~2,1O-1] and let
a = {(a, 1], [a, 1]; a E [0, 1]). It is well known that the increasing Borel
functions on [0, 1] are the a-measurable functions on this space. Let
r E (1, (0); it is easy to prove that f'( w) ~ 0 if W E [0, 10 -I ] and fr( w) = 0 if
WE (10 -1, 1]. Moreover, if r(n) -+ 00 then lim fr(n) = 0 a.e. On the other
hand, the a-conditional midrange of X is M a = !1(l/IO, 1J.

Finally we prove the convergence of the Lr-distance from X to Lr(a),
dr = IIX- fr II" to d= IIX- foo 1100' as r -+ 00.'

THEOREM 4.5. Let dr be the Lr-distance from X to Lr(a). Then dri d as
rt 00.

Proof It suffices to prove limn ~ 00 dr(n) ~ d. Let r(O) be arbitrary
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but fixed. It suffices to show, according to Theorem 4.4, that
IIX-lim infnfr(n) II r(O) ~ limn --> 00 dr(n)·

Assume w.l.o.g. that r(n)~r(O). Let m~k, then (see Theorem 4.4)

IIX -min{Jr(l)' k~ l~m}llr(Oj

~ IIX -min{Jr(lj' k~ l~m}llr(kj

~ IIX - fr(mj II r(mj ~ limn --> 00 dr(n)·

Hence IIX - min{Jr(l)' k ~ I} II r(O) ~ limn--> 00 dr(nj, whence

IIX -lim infnfr(nj Ilr(o) ~ limn--> 00 dr(nj·
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